

A Theorem on Numbers of the Form $10{ }^{x}$

Ravin Kumar ${ }^{\text {r* }}$
${ }^{1}$ Department of Computer Science, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India. E-mail: ravin.kumar.cs.2013@miet.ac.in

Article Info

Volume 1, Issue 1, October 2021
Received : 28 November 2020
Accepted : 25 August 2021
Published : 05 October 2021
doi: 10.51483/IJPAMR.1.1.2021.55-57

Abstract

Number theory is one of the core branches of pure mathematics. It has played an important role in the study of natural numbers. In this paper, we are presenting a theorem on the numbers of form 10^{x}, where $\mathrm{x} \in \mathbb{Z}^{+}$. The proposed theorem have a major application in computer science. It can be used to predict ' n ' bits which will always represent more than 10^{X} total numbers. We proved that the nature of the ' n ' bits is always one of the forms $10 i, 10 i+4$, or $10 i+7$, where $i \in W$.

Keywords: Number theory, Binary Number System, Modular Arithmetic, 10^{X}
© 2021 Ravin Kumar. This is an open access article under the CC BY license
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

1. Introduction

Number theory is one of the oldest fields of pure mathematics. It covers board topics dealing with theories focused on subsets of real numbers such as positive integers, rational numbers, and natural numbers (Kraft and Washington, 2018). Number theory also deals with the diverse subtopics of modular arithmetic (Inam and Büyükapýk, 2019), and prime numbers (Flath, 2018).

In this paper, along with the mathematical proof, an application of our proposed theorem is also discussed in computer science.

2. Proposed Theorem

For any number of the form 10^{X}, where $\mathrm{x} \in \mathbb{Z}^{+}$the following mathematical expression is always true.

$$
2^{\left(\left(10\left[\frac{x}{3}\right]\right)+4((x \bmod 3) \bmod 2)+7\left[\frac{(x \bmod 3)}{2}\right]\right)}>10^{x}, \text { where } \mathrm{X} \in \mathbb{Z}^{+} .
$$

2.1 Mathematical Proof

In a decimal number system, we know that:

$$
\begin{equation*}
2^{10}>10^{3} \tag{1}
\end{equation*}
$$

[^0]\[

$$
\begin{align*}
& 2^{4}>10 \tag{2}\\
& 2^{7}>10^{2} \tag{3}
\end{align*}
$$
\]

From Equations (1), (2) and (3), it can be concluded that,
$2^{10 i}>10^{3 i}$ where $\mathrm{i} \in \mathbb{Z}^{+}$
$2^{4 j} \geq 10^{j}$ where $\mathrm{j} \in\{0,1\}$
$2^{7 k} \geq 10^{2 k}$ where $\mathrm{k} \in\{0,1\}$
On combining Equations (4), (5) and (6), a new combined form is obtained.
$2^{10 i+4 j+7 k}>10^{3 i+j+2 k}$
Since, $0 \leq(x \bmod 3) \leq 2$, it can be said that:
$0 \leq((x \bmod 3) \bmod 2) \leq 1$, where $\mathrm{x} \in \mathbb{Z}^{+}$
$0 \leq\left\lfloor\frac{(x \bmod 3)}{2}\right\rfloor \leq 1$, where $\mathrm{x} \in \mathbb{Z}^{+}$
In Equation (7), we substitute i with $\left\lfloor\frac{x}{3}\right\rfloor, j$ is substituted with $((x \bmod 3) \bmod 2)$ using Equation (8), and k is substituted with $\left\lfloor\frac{(x \bmod 3)}{2}\right\rfloor$ using Equation (9). After performing all these substitutions, following equation is obtained.

$$
\begin{equation*}
2^{\left(\left(10\left[\frac{x}{3}\right\rfloor\right)+4((x \bmod 3) \bmod 2)+7\left[\frac{(x \bmod 3)}{2}\right]\right)}>10^{\left(\left(3\left\lfloor\left.\frac{x}{3} \right\rvert\,\right\rfloor+((x \bmod 3) \bmod 2)+2\left[\frac{(x \bmod 3)}{2}\right]\right)\right.}, \mathrm{X} \in \mathbb{Z}^{+} \tag{10}
\end{equation*}
$$

Equation (10) can further be simplified using a well-known relationship (Meidânis, 1990) of modular arithmetic.

$$
\begin{equation*}
x \bmod y=x-y\left\lfloor\frac{x}{y}\right\rfloor \tag{11}
\end{equation*}
$$

RHS of equation 10 can further be simplified using Equation (11).
$3\left\lfloor\frac{x}{3}\right\rfloor=x-(x \bmod 3)$
$2\left\lfloor\frac{(x \bmod 3)}{2}\right\rfloor=(x \bmod 3)-((x \bmod 3) \bmod 2)$
Now simplifying Equation (10), using Equations (12) and (13).

$$
2^{\left.\left(\left(10\left[\frac{x}{3}\right\rfloor\right]\right)+4((x \bmod 3) \bmod 2)+7\left[\frac{(x \bmod 3)}{2}\right]\right)}>10^{(x-(x \bmod 3)+((x \bmod 3) \bmod 2)+(x \bmod 3)-((x \bmod 3) \bmod 2))}
$$

i.e.,

$$
\begin{equation*}
2^{\left(\left(10\left[\frac{x}{3}\right]\right)+4((x \bmod 3) \bmod 2)+7\left[\frac{(x \bmod 3)}{2}\right]\right)}>10^{x}, \text { where } \mathrm{x} \in \mathbb{Z}^{+} \tag{14}
\end{equation*}
$$

This proves that our proposed theorem on numbers of the form 10^{x} is mathematically correct.

3. Applications in Computer Science

In digital computers, our proposed theorem proves that ' n ' bits of the form $10 i, 10 i+4$, or $10 i+7$, where $i \in W$ can always represent numbers greater than 10^{x}.
$2^{n}>10^{x}$, where $\mathrm{x} \in \mathbb{Z}^{+}$
In Equation (15), for a given value of x, value of n bits can be found using the proposed theorem presented in Equation (14).

$$
n=\left(\left(10\left\lfloor\frac{x}{3}\right\rfloor\right)+4((x \bmod 3) \bmod 2)+7\left\lfloor\frac{(x \bmod 3)}{2}\right\rfloor\right), \text { where } \mathrm{x} \in \mathbb{Z}^{+}
$$

It showed that in a digital computer, for a given x, " n " bits will always be able to represent a number greater than 10^{x}, where $x \in \mathbb{Z}^{+}$. For ease of implementation, a computer program of the proposed theorem is provided open source in the github repository (Github Repository, 2019).

References

Flath, D.E. (2018). Introduction to Number Theory. American Mathematical Soc., AMS Chelsea Publishing, 384, 212p.
Github Repository. (2019), https://github.com/mr-ravin/theorem10, last accessed 2019/7/31.
Inam, I., and Büyükapýk, E. (2019). Notes from the International Autumn School on Computational Number Theory. Springer.

Kraft, J., and Washington, L. (2018). An Introduction to Number Theory with Cryptography. Chapman and Hall/CRC, $1^{\text {st }}$ edition, 572p.

Meidânis J (1990). Lower Bounds for Arithmetic Problems. University of Wisconsin-Madison Department of Computer Sciences.

Cite this article as: Ravin Kumar (2021). A Theorem on Numbers of the Form 10․ International Journal of Pure and Applied Mathematics Research, 1(1), 55-57. doi: 10.51483/IJPAMR.1.1.2021.55-57.

[^0]: * Corresponding author: Ravin Kumar, Department of Computer Science, Meerut Institute of Engineering and Technology, meerut250005, Uttar Pradesh, India. E-mail: ravin.kumar.cs.2013@miet.ac.in

 2789-9160/® 2021. Ravin Kumar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

